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Purpose. The aim of this study is to define and illustrate metrics for the external evaluation of a

population model.

Materials and Methods. In this paper, several types of metrics are defined: based on observations

(standardized prediction error with or without simulation and normalized prediction distribution error);

based on hyperparameters (with or without simulation); based on the likelihood of the model. All the

metrics described above are applied to evaluate a model built from two phase II studies of gliclazide. A

real phase I dataset and two datasets simulated with the real dataset design are used as external

validation datasets to show and compare how metrics are able to detect and explain potential adequacies

or inadequacies of the model.

Results. Normalized prediction errors calculated without any approximation, and metrics based on

hyperparameters or on objective function have good theoretical properties to be used for external model

evaluation and showed satisfactory behaviour in the simulation study.

Conclusions. For external model evaluation, prediction distribution errors are recommended when the

aim is to use the model to simulate data. Metrics through hyperparameters should be preferred when the

aim is to compare two populations and metrics based on the objective function are useful during the model

building process.

KEY WORDS: external validation; metrics; model evaluation; population pharmacokinetics; posterior
predictive check.

INTRODUCTION

Population pharmacokinetic (PK) and/or pharmacody-
namic (PD) analyses using nonlinear mixed-effects models
are increasingly used during drug development (1Y3) and for
simulation of clinical trials (4 Y 6). The use of population
pharmacokinetic modelling in the drug development process
is recommended in the FDA’s guidance for industry to help
identify differences in drug safety and efficacy among
population subgroups (7). Model evaluation is also recom-
mended in this guidance however there is no consensus today
on an appropriate approach to assess a population model.

Two types of model evaluation can be performed. The
first is internal evaluation and refers to the use of data
splitting and resampling techniques (8); in the following, we
only consider the second one, external evaluation, which
refers to a comparison between a validation dataset and the
predictions from the model built from the learning dataset

using dosage regimen information and possibly covariates
from the validation dataset. The validation dataset is not
used for model building or for parameter estimation.

In this paper, we describe criterion which are often used
for model evaluation as well as some new metrics or new
approaches that can be used for external model evaluation in
population PK or PD analyses. We then propose to compare
the metrics for the evaluation of a population PK model with
different tests and graphs.

Different approaches to model evaluation have been
proposed (9), although none has yet proved universally
preferable. We consider here metrics with or without Monte
Carlo simulation. Metrics with Monte Carlo simulation are
called posterior predictive check (PPC), and they evaluate
the adequacy between the data and the model by comparing
a given statistic, computed with the observed data, to its
posterior predictive distribution according to the model. PPC
was defined by Yano et al. (10). Several papers have been
published that apply PPC to pharmacokinetic–pharmaco-
dynamic models (11,12).

Evaluation through prediction errors on observations
calculated by linearisation of the model are the most used
model evaluation tool (13 Y 17). The mean square prediction
error (precision) and the mean prediction error (bias) are
easily computed and used to compare predictions to obser-
vations. However prediction errors on observations are not
independent within an individual (18). The standardized
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prediction errors, obtained using a first-order approximation,
are also often used. In NONMEM, their computation takes
into account correlation of the observations within an
individual so that standardized prediction errors are decorre-
lated (9). A recent method consists of using PPC on
observations, by computing for each observation prediction
discrepancies as the percentile of the observation in the
whole distribution of predictions (19). Computation of
prediction discrepancies using Monte Carlo integration does
not require model approximation but this metric is correlated
within an individual. This method has been applied to detect
the differences in the pharmacokinetics of S1, an oral
anticancer agent, in Western and Japanese patients (20). As
predictions discrepancies did not take into account correla-
tion of the observations within an individual (19,20), we have
decorrelated this metric in this paper.

A second approach to model evaluation is through the
examination of population parameters or hyperparameters,
comparing population estimates of the parameters between
the learning and the validation datasets with appropriate tests
based on the estimated standard error. Another method for
hyperparameter comparison is to use PPC.

A third approach is to use the objective function for
model evaluation. We describe in this paper two tests based on
this metric.

These metrics were applied to the evaluation of a
population pharmacokinetic model of gliclazide (an antidia-
betic drug) which is a one compartment model with zero
order absorption, built from two phase II studies. We show
the results of the evaluation for three validation datasets: a
real phase I dataset (Vreal) and two datasets simulated with
the design of Vreal. The first (Vtrue) is simulated using the
parameters of the model; the second (Vfalse) is simulated
using the same model, but with a bioavailability multiplied by
2. All these metrics were applied as an illustration to these
two simulated datasets to show how they are able to detect
and explain potential adequacies and inadequacies of the
model and to compare theoretical statistical properties of the
metrics.

MATERIALS AND METHODS

Notations

Let B denote a learning dataset and V a separate
external validation dataset. B is used to build a population
pharmacokinetic model called MB. External evaluation
methods compare the predictions obtained by MB, using the
design of V, to the observations in V.

Let i denote the ith individual (i = 1,...,N) and j the jth
measurement in an individual ( j = 1,...,ni, where ni is the
number of observations for subject i). Let Yi be the ni -vector
of observations observed in individual i. The function f is a
nonlinear structural model, i.e., the pharmacokinetic model.
The statistical model for the observation Yij in patient i at
time tij, is given by:

Yij ¼ f tij; �i

� �
þ "ij ð1Þ

where qi is the p-vector of the pharmacokinetic individual
parameters and (ij is the residual error, which is assumed to

be normal, with zero mean. We assume that the variance of
the error follows a combined error model:

Var "ij

� �
¼ �2

inter þ �2
slope � f tij;�i

� �2 ð2Þ

where �2
inter and �2

slope are two parameters characterizing the
variance. This combined variance model covers the case of an
homoscedastic variance error model when �2

slope ¼ 0 and the
case of a constant coefficient of variation error model when
�2

inter ¼ 0 . Let S be the parameters of the measurement
error, ¼ �2

inter; �
2
slope

� �
:

We assume an exponential model for interindividual
variability, so that:

�i ¼ �� exp �ið Þ ð3Þ

where q is the population vector of the pharmacokinetic
parameters, and hi represents the vector of random effects of
individual i. It is assumed that hi õN(0, W) with W defined as
varianceYcovariance matrix so that each diagonal element !2

k

represents the variance of the kth component of the random
effects vector.

The vector of population parameters called hyperparam-
eters, is denoted Y and has dimension Q. Y includes the
vector of population means q, the unknown elements in the
varianceYcovariance matrix of the random effects W. Estima-
tion of the hyperparameters is based on maximum likelihood
(ML). G is the asymptotic varianceYcovariance matrix of
estimation, i.e., the Fisher information matrix calculated in
NONMEM using the inverse Hessian matrix for the hyper-
parameters Y . SEq, the standard errors of estimation for
the qth hyperparameter Yq, is the square root of the qth
diagonal element of G.

Model MB is defined by its structure and by the hy-
perparameters YB estimated from the learning dataset B.

Illustrative Example

Phase II Studies (Learning Dataset)

Two phase II studies in a total of 209 Type II diabetic
patients were pooled to create the dataset B, which was used
to build MB. These studies were performed during the clinical
development of a modified release formulation of gliclazide
(gliclazide MR) and were part of a larger dataset analyzed by
Frey et al., who studied the relationship between the phar-
macokinetics of gliclazide and its long-term pharmacodynamic
effect in a large population of Type II diabetic patients (21).

The first study (N = 50 patients) was a phase II, dose-
increase, monocentric, randomised, parallel double-blind
placebo-controlled study. Patients were first treated with
placebo for a 2-week wash-out period. At the end of this
period, 50 patients were randomised to receive placebo (10
patients), 15 mg of gliclazide (20 patients) or 30 mg of
gliclazide (20 patients) during 4 weeks (period 1). During the
next 4 weeks (period 2), the ten patients treated by placebo
continued to receive placebo. For the other 40 patients, two
fasting plasma glucose (FPG) measurements were performed
at the end of the first period. If the mean of the two FPG
measurements was lower than 7.8 mmol/l, the patients
received the same dose of gliclazide (15 or 30 mg) as in the
first period. If the mean of the two FPG measurements was
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7.8 mmol/l or more, the patients received a dose of gliclazide
two times higher (30 or 60 mg) than in the first period.

To obtain a better evaluation of patient compliance,
MEMS (Medication Event Monitoring System), medication
bottles in which the cap contains microelectronic components
recording the dates and times of dose removals from the
bottle, were used. Blood samples were drawn on the first day,
at the end of the first 4 weeks and at the end of the study (8
weeks), according to one of two sampling schedules (S1 or S2)
which were randomly assigned for a period to the 50 patients.
For S1, the sampling times were pre-dose, 2, 4, 6, 8 h after
administration and before leaving the clinical research unit
(13 h after administration). For S2 the sampling times were
pre-dose, 3, 5, 7, 9 h after administration and before leaving
the clinical research unit (13 h after administration).

The second study (N = 169 patients) was a phase II, dose
ranging, monocentric, randomised, parallel double-blind
placebo-controlled study. After a 2-week wash-out period,
patients were randomly divided into six parallel groups and
given either placebo or one of the following doses of
gliclazide: 15, 30, 60, 90 and 135 mg. Gliclazide was
administered once a day during 8 weeks. Three blood
samples were taken on the last day of treatment: just before
the last administration, 2 h after dosing and between 5 and
6.5 h (half of the patients) or between 7.5 or 9 h after dosing
(other half of the patients). The times of drug intake on the
day of the visit and on the day before the visit were recorded.

Gliclazide plasma concentrations were measured using
high-performance liquid chromatography with ultaviolet
detection. The lowest concentration giving accuracy and
precision within a limit of 20% was 50 ng mlj1. This value
was taken as the limit of quantification.

Population Pharmacokinetic Model from the Above
Phase II Studies

Plasma concentration-time data were obtained from the
209 patients who received gliclazide. A one compartment
model with zero-order absorption and first-order elimination
was used to fit the concentration-time data of gliclazide. This
model was parameterized with the apparent volume of
distribution (V/F), the apparent clearance (CL/F) and the
duration of absorption for the zero order absorption model
(Tabs). An exponential random-effect model was chosen to
describe inter-individual variability.

During model building, values below the quantification
limit (BQL), with a quantification limit (QL) which was
equal to 0.05 mg/l, were treated in one of the standard ways
by imputing the first BQL measurement to QL/2 and
omitting subsequent BQL measurements during the terminal
phase (22). The symmetrical reverse procedure was applied
to BQL measurements during the absorption phase. Only
five samples were below the quantification limit.

The population analysis of the two phase II studies was
performed using NONMEM software version V (University
of San Francisco) with the FOCE method with interaction.
SAS version 8.2 software was used to perform statistical
analyses and to plot graphs (SAS Institute INC., 1990).

Model selection was based on comparison of the
objective function given by NONMEM. For nested models,
a likelihood ratio test (LRT) was performed with a p value of
0.05; i.e., the difference on objective function was compared

to the limit of a chi-square distribution, with a number of
degrees of freedom equal to the number of additional
parameters in the full model. For non-nested models, models
were compared using the Akaike criterion (AIC). Goodness-
of-fit plots were performed during the building process
(population or individual predictions versus observations,
WRES versus population predictions (or time), individual
WRES versus individual predictions (or time)). Decrease of
the inter-individual variability of parameters estimation and
decrease of the standard error of the fixed effects were also
taken into account.

A proportional error model was found to best describe
the residual error model. As study 1 used MEMS, the records
of dates and times of drug administrations were more
accurate than for study 2. Two different variances for the
error, one for study 1 and another for study 2, were included,
and this provided a significant improvement in the likelihood
(p < 0.0001). Several models for the random effects were
tested to determine the basic model that best fitted the data,
and only random effects on CL/F and V/F were kept in the
model. No inter-occasion variability was found in the model.
As there were five different doses of gliclazide (15, 30, 60, 90
and 135 mg), the effect of dose was tested on the two
pharmacokinetic parameters with inter-individual variability
(CL/F and V/F). We therefore defined a categorical covar-
iate, DF, which equals 1 for dose >60 mg and 0 for dose
e60 mg and qD the fixed effect for the dose effect when dose
>60 mg. Inclusion of this covariate in the population analysis
on V/F provided a significant improvement (p < 0.001). The
fixed effect equation for the volume was: V

�
F � �DF

D :
The estimates of the population parameters for this

model are given in Table I. The CV of the error model were
estimated to 0.06% (s1) for the study using MEMS and
0.11% (s2) for the study without MEMS.

Phase I Study (Validation Dataset)

The validation dataset Vreal was obtained in a phase I
open single dose study with a two-way-cross-over randomised
and balanced design which aim was to evaluate the absolute
bioavailability of gliclazide. Twelve healthy volunteers re-
ceived gliclazide as a tablet of 30 mg and as a solution given
in 1 h infusion, with a 7-day-wash-out between the two
administrations (23). These volunteers were Caucasian males
and were between 18 and 35 years old. We only considered
here data obtained after oral administration of gliclazide.

Table I. Estimated Population Pharmacokinetic Parameters of

Gliclazide (Estimate and Relative Standard Error of Estimation,

RSE), Pooling the Data of Two Phase II Studies

Population parameters Estimate RSE (%)

CL/F (l/h) 1.0 4.2

qV (L) 21.6 5.8

Tabs (h) 6.6 3.3

qD 0.46 12.4

!2
CL=F 0.35 16.2

!2
V=F 0.17 24.9

�2
1 0.06 10.5

�2
2 0.11 12.7
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For each volunteer, 16 blood samples were taken at 0.5,
1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 24, 36, 48, 60, 72 h after oral dosing.

Simulation

To illustrate and compare the methods presented in the
following section, we simulated with NONMEM two valida-
tion datasets according to the design of the real phase I study
(23). The first dataset (Vtrue) was simulated according to the
model and to the hyperparameters values estimated from
the learning dataset; the second (Vfalse) was simulated using
the same model, but with the fixed effects for V/F and CL/F
divided by two, corresponding to a bioavailability multiplied
by two.

Patients were given the dose of gliclazide under con-
trolled conditions, therefore we assumed a CV of 25% for
the residual error, corresponding to the estimate obtained in
the population where MEMS was used. Values below the
quantification limit for Vtrue, Vfalse and Vreal were treated in
the same way as in the learning dataset. As all subjects
received 30 mg of gliclazide the dose effect was not taken
into account.

The various metrics proposed in the following were first
applied to the two simulated datasets to illustrate the ability
of each metric not to reject the Bcorrect^ dataset (Vtrue) and
to reject the Bfalse^ dataset (Vfalse). We then applied these
metrics to the real dataset (Vreal).

Metrics for External Evaluation

The null hypothesis (H0) is that data in the validation
dataset V can be described by model MB. In this section, we
describe the metrics which can be proposed as tools for
model evaluation, and we test their distribution under H0.
We consider metrics with or without Monte Carlo simulation.
Metrics with simulation are called posterior predictive check
(PPC), and evaluate the adequacy between the data and the
model by comparing a given statistic, computed with the
observed data, to its posterior predictive distribution
according to the model (10). When performing Monte
Carlo simulations with the model MB applied to the design
of V, we used the estimates of the parameters without taking
into account the standard errors of estimation. This is
reasonable for large enough datasets.

Since for some of the metrics multiple tests are in-
volved, we used the Simes procedure, a modification of the
Bonferroni procedure, to adjust for the increase of the type I
error (24). This procedure, while preserving the family-wise
error of the test, is less conservative than the Bonferroni
correction but is still simple to apply. This method allows to
test Q simultaneous assumptions (H1,...,HQ), and uses the
following procedure.

The Q p values of each of the Q tests are sorted in
ascending order, so that p1<p2<...<pQ. We chose a family-
wise error rate of 0.05. Starting with p1, the smallest p value,
each successive pq for q = 2,...Q, is compared with the value
cq = q � 0.05/Q. If p1 > c1, H1,..., HQ are not rejected, if not,
H1 is rejected and p2 and c2 are compared. The procedure is
then iterated until pq is found such that pq > cq. Then the
hypotheses H1... Hqj1 are rejected while the remaining
hypotheses Hq... HQ are not rejected.

Metrics Based on Observations

Metrics based on observations are the most frequently
used statistics to validate population models. Predictions are
obtained using MB and the design of V and compared to the
observed values in V. Three metrics based on observations
are tested.

Standardized Prediction Error on Observations
(SPEY). Prediction errors are defined as the difference
between the observations and the predictions obtained
using MB. The vector PEYi, of the ith subject is then:

PEYi ¼ Yi � PREDi ð4Þ

where Yi is the vector of observations of the ith subject, and
PREDi the vector of population prediction (assuming h = 0)
using MB. It should be noted that, for nonlinear models, the
prediction at h = 0 is not the mean of the predictive
distribution. PEYi is obtained with NONMEM under the
name of RESi.

Calculation of standardized prediction errors takes into
account the variability. SPEYi, the vector of standardized
prediction error for the ith subject is defined as (25):

SPEYi ¼ C
�1=2
i � PEYi ð5Þ

where the matrix Ci is the varianceYcovariance matrix of Yi in
the population derived using the first order approximation
and C

�1=2
i is obtained using the Cholesky decomposition of

Ci. SPEYi is derived from the full variance matrix of
predictions so are decorrelated assuming that the approx-
imations made by linearization are negligible. The standard-
ized predictions errors were derived, for each observation,
from the mean value and its variance, computed using the
first-order approximation around the mean of the model like
in the FO linearization approach used in NONMEM. SPEYi

is obtained with NONMEM under the name weighted
residual denoted WRESi using the first order approximation
of the model.

Under H0 and based on the first-order approximation,
the prediction errors SPEYij should have a normal distribu-
tion with mean 0. Testing the model adequacy using the
assumed N(0, 1) distribution of the weighted residuals was
first proposed by Vozeh (13).

Standardized Prediction Error on Observations with
Simulation (SPEYS). Instead of using the model predictions
at h = 0 to estimate PREDi and a linearisation of the model
to estimate Ci, we can use Monte Carlo simulations to get
better estimates of the mean and the variance of the
predictive distribution of each Yi. Using the design of V and
model MB, we simulated K datasets V simk. Let k denote the
kth simulation (k = 1,..., K), and Ysimk

i the vector of sim-
ulated observation of the ith subject for this kth simulation.
Let E(Yi) denote the vector of the mean of observations
for the ith subject, estimated empirically over the k simu-
lations as:

E Yið Þ ¼
1

K

X

k

Ysimk
i

� �
ð6Þ

Let Var (Yi) be the full predicted variance of Yi estimated
empirically from the K simulations. We define the standard-
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ized prediction error on observations with simulations for the
ith subject SPEYSi as:

SPEYSi ¼ Var Yið Þ�1=2 � Yi � E Yið Þð Þ ð7Þ

If K is large enough, under H0 and based on the first-order
approximation, the mean and variance of SPEYSij should be
0 and 1. By using NONMEM terminology SPEYS are a form
of simulated WRES.

Normalized Prediction Distribution Errors on Observa-
tions with Simulation (NPDEYS). SPEY and SPEYS are
standardized errors both defined by analogy to normal
residuals, SPEYS using better estimates of mean and vari-
ance but their distribution is not normal for nonlinear
models. As an alternative, we can consider the whole
distribution to define prediction distribution errors (26). Let
Fij denote the cumulative distribution function (cdf) of the
predictive distribution of Yij under MB. We define the
prediction distribution error PDEYSij as the value of Fij at
Yij, Fij (Yij). Fij can be approached using Monte Carlo
simulation of Vsimk as described previously. PDEYSij is then
computed as the percentile of Yij in the empirical distribution
of the Ysimk

ij :

PDEYSij ¼ Fij ¼
1

K

X

k

�ijk ð8Þ

where dij = 1 if Ysimk
ij � Yij , and = 0 otherwise. These

PDEYSij are correlated within an individual i. To obtain
decorrelated PDEYSij, we used E(Yi) and Var(Yi) esti-
mated empirically from the K simulations and calculated
Ysimk

i
* ¼ Var Yið Þ�1=2 Ysimk

i � E Yið Þ
� �

and Yi* ¼ Var Yið Þ�1=2

Yi � E Yið Þð Þ . We then calculated Fij based on these two new
vectors Ysimk

i
* and Yi* instead of Ysimk

i and Yi.
Under H0, if K is large enough, the distribution of the

PDEYS should follow a uniform distribution over [0,1] by
construction of the cdf. Normalized prediction distribution
errors (NPDEYS) can then be obtained using the inverse
function of the normal cumulative density function imple-
mented in most software. By construction NPDEYSij follow
a N(0, 1) distribution without any approximation and are
uncorrelated within an individual i.

Tests and Graphs. For each of the three metrics on
concentrations, a Wilcoxon signed-rank test can be
performed to test whether the mean is significantly different
from 0, and a Fisher test can be performed to test whether
the variance is significantly different from 1. Under the
approximations mentioned previously, SPEYij and SPEYSij

should follow a normal distribution if H0 is true, while
NPDEYSij should follow a normal distribution without any
approximation. This can be tested using the ShapiroYWilks
test (SW), which tests the normality assumption with no
constraints on mean and variance. We have to consider
sequentially three tests (Wilcoxon, Fisher or ShapiroYWilks
tests) to decide whether to reject a validation dataset. Indeed,
under the H0, SPEY, SPEYS and NPDEYS should follow a
normal distribution N(0, 1). The most important test is for
the mean (Wilcoxon) than for the variance (Fisher), than for
the distribution (ShapiroYWilks) and we propose to do them
in that order.

Graphically, the metrics can be represented by scatter-
plots versus time to look at the behaviour of the variances.

We can also assess distributional assumptions using quan-
tileYquantile plots (QQ-plots). Quantiles from the metrics
distribution (SPEY, SPEYS and NPDEYS) can be plotted
against quantiles of the theoretical distribution N(0, 1).
Departures from the theoretical distribution can be visually
assessed by plotting the unity line y = x. Histograms can be
plotted instead of QQ-plots to represent the distribution of
the metrics.

Metrics Based on Hyperparameters

Model evaluation can be performed on hyperparam-
eters. The model developed on the learning dataset B can be
used to estimate the hyperparameters in the validation data-
set V. Let <V

q be the qth hyperparameter estimated with the
model in V, which we compared to the qth hyperparameter
estimated in B, <B

q .

Standardized Prediction Error on Hyperparameter
(SPEH). We define SPEHq for the qth hyperparameter as
the following Wald statistic:

SPEHq ¼
<V

q �<B
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE <V
q

� �2

þ SE <B
q

� �2
r ð9Þ

where SE <V
q

� �
(respectively, SE <B

q

� �
) is the standard error

of estimation for the qth hyperparameter in the analysis on V
(respectively, on B). Asymptotically, maximum likelihood
estimators follow a normal distribution. Therefore, under H0,
SPEHq should follow N(0, 1).

Standardized Prediction Error on Hyperparameter

with Simulation (SPEHS)

As previously, K datasets V simk using MB with design V

are simulated. For each simulated dataset, the vector of
hyperparameters Y simk is estimated. The qth hyperparameter
estimated on V with MB, <V

q is then compared to the em-
pirical distribution of <simk

q .

Test and Graphs. The value of SPEH can be compared
to the corresponding critical value of a N(0, 1). The
hyperparameters can be compared one by one or with a
global test (27). To compare the whole vector of the Q

hyperparameters between the two analyses with a global
approach, the null hypothesis: {Y B

j Y V = 0} can also be
tested using the global Wald test, which statistic is given by:

T2 <ð Þ ¼ <B �<V
� �0

GB þ GV
� ��1

<B �<V
� �

ð10Þ

where GV (respectively, GB) is the full variance matrix of
estimation in V (respectively, in B). Asymptotically T2(Y )
follows a chi-square with Q degrees of freedom under H0.

For tests applied to SPEHS, the K values of <simk
q are

sorted and the percentile of <simk
q , perc, is defined as the

number of <simk
q below <V

q divided by K. Then the p value
of the two sided test based on the empirical distribution are
calculated as:

p ¼ 2�min perc; 1� percð Þð Þ ð11Þ

p is compared with 0.05. A Simes procedure can be
applied to the Q p values. To illustrate SPEHS, a histogram
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of the predictive distribution of simulated hyperparameters is
plotted, on which the estimated value on V, <V

q is overlayed.

Metrics Based on the Objective Function

The objective function (OF) given in NONMEM
corresponds to minus twice the log-likelihood plus some
constant terms. OF can be determined on a dataset V with
model MB and hyperparameters Y B without fitting (OFV

nofit;
all parameters fixed), or with hyperparameters Y V after
fitting the model on V (OFV

fit ; all parameters estimated).
Several metrics can be defined from these objective func-
tions, with and without Monte Carlo simulation.

Prediction Error on Objective Function (PEOF). We
compute the difference DOFV between OFV

fit and OFV
nofit :

PEOFV ¼ OFV ¼ OFV
nofit �OFV

fit ð12Þ

Prediction Error on Objective Function with Simulation
(PEOFS). OFV

nofit can also be compared to the posterior
predictive distribution of the objective function estimated
from K simulated datasets with MB, yielding to values OF simk

nofit .
By using PEOFS, we make the assumption that the simulated
dataset have the same number of observations.

Prediction Error on Gain in Objective Function

with Simulation (PEGOFS). As the simulated datasets may
have different number of values below the limit of
quantification, they may have a different number of
observations after treating the BQL. The empirical posterior
distribution for PEOFS does not correct for the varying
number of data involved in each simulated dataset and we
think it is then preferable to compare the observed gain of
objective function on the simulated dataset.

A third approach compares therefore the DOFV with its
posterior predictive distribution. For each simulated dataset
k, we estimate parameters with MB and calculate the gain in
objective function OFsimk

nofit �OFsimk
fit

� �
which is then com-

pared to DOFV.

Tests and Graphs. For the metric without Monte Carlo
simulation, there is no test to compare OFV

nofit and OFV
fit . If

the model is true, the difference should be small. OFV
nofit can

be compared to the empirical distribution of OFsimk
nofit and a p

value can be obtained as for SPEHS. To compare DOFV with
the empirical distribution of DOFsimk, as OFV

nofit is
necessarily higher than or equal to OFV

fit , we calculate the
p value of an unilateral test as:

p ¼ 1� percð Þ ð13Þ

The p value can be compared with 0.05.
To illustrate PEOFS, we plot histograms of the predictive

distribution of OFsimk
nofit or DOFsimk, and we show the estimated

value on V, OFV
q and DOFV.

RESULTS

Metrics Illustration on the Two Simulated Datasets

Simulated concentrations versus time data for both Vtrue

and Vfalse datasets are displayed in Fig. 1. The dashed lines
represent the 80% prediction interval, obtained for each

time-point as the 10th and 90th percentiles for 1,000
simulations under MB. For Vtrue, 167 of 192 concentrations
are inside the 80% prediction interval, versus only 74 of 190
for Vfalse. It is clear from this plot that Vfalse is not well
described by MB, with a large number of concentrations
above the 80% prediction interval so that no further metric
would be needed for a real example. In the following, we
apply all the metrics described above to these two datasets to
show how they are able to detect and explain potential
adequacies and inadequacies of MB and to compare
theoretical statistical properties of the metrics.

Metrics Based on Observations

The three standardized metrics based on observations
are plotted versus time or versus predictions. The plots of
these three metrics versus time are shown in Fig. 2. SPEY,
SPEYS and NPDEYS have an homogeneous distribution for
Vtrue with low variance (1.15, 1.08, 0.84, respectively) and are
scattered around zero (means of 0.02, 0.04, 0.02, respective-
ly). For Vfalse, these metrics have upper variance (4.50, 3.63,
1.68, respectively) and are mainly positive (mean are 0.73,
0.58 and 1.35, respectively). SPEYS and NPDEYS were
calculated using K = 1,000 simulations.

The QQ-plot compares the distribution of each of these
metrics with a normal N(0, 1) distribution (Fig. 3). For Vtrue,
points are close to the line y = x. On the contrary, for Vfalse,

Fig. 1. Simulated concentrations versus time for Vtrue (top) and Vfalse

(bottom). The dashed lines represent the 80% predicted interval,

obtained for each time-point as the 10th and 90th percentiles of 1,000

simulations under MB.
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points are systematically biased away from the line y = x,
which suggests that SPEY, SPEYS and NPDEYS do not
follow a normal N(0, 1) distribution. The NPDEYS seem
more sensitive visually for the QQ-plot.

The results of the statistical tests performed on the two
datasets for these metrics are given in Table II. The mean of
the three metrics is not significantly different from 0 for Vtrue,
and the variance does not differ from 1. For Vtrue, the
distribution of both SPEY and SPEYS is found to differ
significantly from a normal distribution with the SW test even
though the data were simulated under the model, whereas
NPDEYS do not deviate from a normal distribution. This
illustrates that only NPDEYS have the good theoretical

properties of following a N(0, 1) under H0 as discussed
earlier, without any approximation.

For Vfalse, the means of the three metrics are significant-
ly different from 0 and the variances are significantly
different from 1. The distribution of both SPEY and SPEYS
is found to differ significantly from a normal distribution with
the SW test. However NPDEYS do not differ from a normal
distribution in this example but the mean and variance tests
are significantly different from 0 and 1, respectively. There-
fore, for Vfalse, the three metrics do not follow a N(0,1)
distribution, and H0 was rejected.

The three metrics based on concentration can discrim-
inate Vtrue and Vfalse by visual inspection but the trend in the

Fig. 2. Metrics based on observations plotted versus time on Vtrue (left) and on Vfalse (right). Top: SPEY; middle: SPEYS; bottom: NPDEYS.

The dashed lines represent the 95% prediction interval for a normal distribution.
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plots are more apparent for NPDEYS than for the two other
metrics.

Metrics Based on Hyperparameters

Table III shows the estimates of the hyperparameters
and their standard errors on Vtrue and Vfalse after fitting,
along with the estimates of the hyperparameters used for MB.
Using Wald tests on each hyperparameter, the estimates
found with Vtrue are not significantly different from the
previous estimates in B. As expected, there is a significant
difference between B and Vfalse for CL/F and V/F. The global
difference between the vector of estimates for B and Vtrue is
non-significantly different from 0 with a global Wald test

(T2
Vtrue
¼ 0:79 , p = 0.99 for a chi-square with 6 degrees of

freedom) but is significantly different from 0 between B and
Vfalse (T2

Vfalse
¼ 108 , p < 0.0001).

For hyperparameters with Monte Carlo simulation, the
estimated values of the population parameters on Vtrue are
within the simulated posterior predictive distribution of each
parameter. This is illustrated on the histograms in Fig. 4 for
CL/F and !2

CL=F . There is no significant departure from the
prediction distribution for CL/F (p = 0.69), V/F (p = 0.72),
Tabs (p = 0.75), !2

CL=F (p = 0.83), !2
V=F (p = 0.29) and s2 (p =

0.20) using the Simes procedure.
For Vfalse, the test shows a significant departure, using

the Simes procedure, for the predictive distribution for CL/F
(p < 0.0001), V/F (p < 0.0001), but not for Tabs (p = 0.35),

Fig. 3. QQ-plots of the metrics based on observations versus the theoretical N(0,1) distribution for Vtrue (left) and Vfalse (right). The line y = x

is shown to evaluate the adequacy between the theoretical and the observed distribution. Top: SPEY; middle: SPEYS; bottom: NPDEYS.
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!2
CL=F (p = 0.68), !2

V=F (p=0.086) and s2 (p = 0.26), as could
be expected given that only CL and V were changed in the
simulation for Vfalse.

Metrics Based on Objective Function

For Vtrue, the objective function given by NONMEM
with MB is j751 without fitting and j754 with fitting. The
gain in objective function PEOF from fitting is 3. For the
metrics based on objective function with Monte Carlo
simulation, histograms of the predictive distribution of the
objective function without fitting and of the gain in objective
function are displayed in Fig. 5 to illustrate PEOFS and
PEGOFS, respectively. The vertical line corresponds to the
value of the objective function when MB is applied to Vtrue

without estimation (top graph in Fig. 5) or to the value of the
gain in objective function from fitting (bottom graph in
Fig. 5). Compared to the prediction distribution in the
simulated datasets we do not reject Vtrue both for PEOFS
(p = 0.092) and for PEGOFS (p = 0.90).

For Vfalse, the objective function with MB is j421
without fitting and j474 with fitting, so PEOF is 53. Vfalse

is rejected for PEOFS (p < 0.0001) based on its prediction
distribution in the simulated dataset and is also rejected
considering PEGOFS (p < 0.0001). Illustrations of these two
metrics are shown in Fig. 5.

The three metrics perform similarly on the two datasets.
For each dataset, 192 observations are simulated but after
treating the BQLs, the two datasets have different number of
observations (192 for Vtrue and 190 for Vfalse). So the method
comparing the gain of objective function, PEGOFS is more
adapted if we compare Vtrue and Vfalse.

Illustration with the Real Dataset

Finally these metrics were applied to the real phase I
dataset (Vreal), the design of which was used to simulate Vtrue

and Vfalse. A plot of the concentration versus time data for
Vreal is displayed in Fig. 6. Here 144 concentrations (out of
179) are inside the 80% prediction interval but the variability
of these concentrations seems to be smaller than for Vtrue.

The results of the tests performed for the metrics based
on observations are given in Table IV. The mean of the
SPEY is significantly different from 0, but the means of
SPEYS and NPDEYS are not. The variance of the three
metrics is significantly different from 1 and their distributions
do not follow a normal distribution according to the SW test.
The scatter plots versus time of the three metrics, SPEY,
SPEYS and NPDEYS are displayed in Fig. 7. and visually
rejected Vreal.

Concerning metrics based on hyperparameters without
Monte Carlo simulation as shown in Table V, the differences
between estimated CL/F, Tabs, !

2
CL=F , and s2 for B and Vreal

are significantly different from 0 with a Wald test, while there
was no significant difference for V/F and !2

V=F . However,
when the whole vector of the six hyperparameters between
the dataset B and Vreal are compared with a global Wald test,
we do not reject the null hypothesis (T2

Vreal
¼ 7:93 and p=0.24

for a chi-square with 6 degrees of freedom). Using the
predictive distribution for the hyperparameters obtained
using Monte Carlo simulation, significant departures from
the predictive distribution were found for CL/F (p < 0.0001),
Tabs (p < 0.0001), !2

CL=F (p < 0.001), !2
V=F (p = 0.03), and s2

(p < 0.0001) but not for V/F (p = 0.93) using the Simes
procedure. Histograms of the predictive prediction of
simulated hyperparameters (CL/F and !2

CL=F ) are displayed
in Fig. 4.

For Vreal, the objective function with MB is j600 without
fitting and j661 with fitting. So PEOF is 61. For the metrics
based on objective function with Monte Carlo simulation,
histograms of the predictive distribution of the objective
function without fitting and of the gain in objective function
are displayed in Fig. 5, with the observed value as a vertical
line. We therefore do not reject Vreal using PEOFS (p =
0.062) but we reject it using PEGOFS (p < 0.0001). After
treating the BQL measurements, Vreal has finally 179 data
(instead of 192 for Vtrue) which may explain the discrepancy.

In conclusion, model MB, developed on a dataset of 209
phase II patients, did not adequately predict the data

Table II. P Values of the Tests Performed on the Three Standardised

Metrics Based on Observations, for Vtrue and Vfalse: Mean, Variance

and ShapiroYWilks (SW) Normality Tests

Dataset Metric Mean test Variance test SW test

SPEY 0.21 0.15 <0.0001

Vtrue SPEYS 0.92 0.19 <0.0001

NPDEYS 0.96 0.10 0.79

SPEY <0.0001 <0.0001 <0.0001

Vfalse SPEYS <0.0001 <0.0001 0.003

NPDEYS <0.0001 <0.0001 0.09

Table III. Population Pharmacokinetic Parameters of Gliclazide (Estimate and Relative Standard Error of Estimation, RSE) Used for MB

Hyperparameter
B Vtrue Vfalse

Estimate RSE (%) Estimate RSE (%) P Estimate RSE (%) P

CL/F (l/h) 1.0 (4.0) 0.98 (16.3) 0.96 0.48 (16.7) <0.0001

V/F (L) 40.0 (5.8) 42.0 (3.3) 0.59 20.0 (7.5) <0.0001

Tabs (h) 6.6 (3.3) 6.5 (7.9) 0.78 7.0 (0.1) 0.08

!2
CL=F 0.35 (17.1) 0.27 (48.1) 0.56 0.34 (38.2) 0.99

!2
V=F 0.11 (27.2) 0.09 (33.3) 0.55 0.06 (33.3) 0.16

s2 0.06 (10.0) 0.05 (10.0) 0.31 0.06 (10.0) 0.82

The second and third columns are the parameters of Vtrue and Vfalse estimated with independent population analyses. P is the p value of the

Wald test for each population parameter of Vtrue and Vfalse compared to B.

2044 Brendel et al.



observed in Vreal, the dataset collected from 12 healthy
volunteers. The main differences were lower number of
subjects, higher clearance in the phase I subjects, as well as
lower inter-individual variability and lower residual error.
Metrics based on observations (concentrations here) were
consistent in showing model misfit, while metrics based on
hyperparameters highlighted the differences between the two
datasets. Finally, PEGOFS was more powerful than metrics
based on likelihood to detect the differences, because of the
large number of BQL in Vreal.

DISCUSSION

Model assessment consists in the evaluation of how well
a model describes a dataset. In this paper, we consider
external evaluation, a comparison between a validation
dataset and the predictions from the population model built
from the learning dataset using design information from the
validation dataset. We illustrate known, as well as new or
improved metrics to perform external evaluation using two
simulated and one real validation datasets. These metrics are
based on observations, hyperparameters or objective func-
tion. Some metrics are built with Monte Carlo simulations,

which are performed using the estimated population model
to be evaluated with the design of the validation dataset. In
this example, the model MB is a pharmacokinetic model, so
the observations are concentrations but it is possible to apply
these metrics to a pharmacodynamic model.

In this paper, we used real data obtained during the
development of gliclazide, an antidiabetic drug. A population
pharmacokinetic model of gliclazide was first built using data
from two phase II studies. We found that the variance of the
residual error was lower in the study where electronic
pillboxes (MEMS) were used. Indeed, the observance was
better taken into account using MEMS because the records
of dates and times of drug administration were more
accurate.

External evaluation of the model MB was then
performed using the dataset from a real phase I study
(Vreal). Two datasets were also simulated using the design
of this Phase I study (Vtrue and Vfalse). Vtrue was simulated
according to the model and to the hyperparameters values
estimated in the phase II studies. Vfalse was simulated using
the same model but with a bioavailability multiplied by two,
that is, dividing by two the values obtained for CL/F and V/F.
We simulated these two datasets to illustrate the ability of
the metrics to validate Vtrue and reject Vfalse.

Fig. 4. Histogram of the predictive distribution of simulated hyper-

parameters estimated using MB: for CL/F (top) and !2
CL=F (bottom).

The values of the corresponding parameters found for Vtrue, Vfalse

and Vreal using an independent population analysis are shown as

vertical lines.

Fig. 5. Histogram of the predictive distribution of the objective

function when model MB is applied to the 1,000 datasets without

estimation (top) and the gain in objective function (bottom). The

values of the objective functions or of the gain found for Vtrue, Vfalse

and Vreal using MB are shown as dotted lines.
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The metrics most often used in model evaluation are
prediction errors and standardized prediction errors (SPEY,
called WRES in NONMEM) on observations (28). The term
BWRES^ is widely used by NONMEM users but
Bstandardized prediction error^ is a general term used in
the FDA guidance and by other authors in the context of
model validation. Indeed, these metrics are called Bresiduals^
when they are applied to the same dataset (internal
validation) but when applied to an external validation
dataset, the denomination Berror^ is more appropriate than
Bresidual^ although they are computed similarly and are
reported as WRES in NONMEM tables. SPEY is not an
optimal metric for external model evaluation because phar-
macokinetics models are generally nonlinear with respect to
the parameters (although the pharmacokinetics of a drug is
often assumed to be linear with respect to dose.) SPEY relies
on a linear approximation of the mixed-effect model around
the mean as in the FO estimation method even if the FOCE
estimation methods is used for estimation (29). In the present
work, this problem appears since SPEY did not follow a
normal distribution even when the dataset has been simulat-
ed using the true model under H0. A somehow more refined
strategy consists in using simulations to recover the empirical
mean and variance of the predictive distribution for each
observation, thus computing what we called SPEYS. How-
ever these SPEYS suffer from some of the same theoretical
flaws as SPEY. However SPEY and SPEYS present good
behaviour to reject our Vfalse as judged by graphically
inspection. Moreover, SPEY (or WRES) present the advan-
tage to be automatically given by softwares such as NON-
MEM. Also noticing that WRES is a poor metric (because
based on the FO approximation), Hooker et al. proposed
computing another metric that they called conditional WRES

(CWRES) in which the FOCE approximation is used for the
computation of the mean and the variance of the model (30).
We did not apply this metric here because we have computed
SPEYS, which calculate the mean and of the variance of the
model based on simulations as opposed to using the FOCE
approximation. The main limitations of all these metrics
(SPEY, SPEYS and CWRES) is that they come from the
theory of linear models and that they implicitly assume that
the observations are normally distributed around the mean
which is not true for nonlinear models.

We use a new approach based on the calculation of
prediction errors on observations, called PDEYS or NPDEYS
in their normalised version (19). This metric does not require
any assumption on the distribution of the observations, and,

Fig. 6. Concentrations versus time for Vreal. The dashed lines

represent the 80% predicted interval, obtained for each time-point

as the 10th and 90th percentiles of 1,000 simulations under MB.

Fig. 7. Metrics based on observations plotted versus time on Vreal.

Top: SPEY; middle: SPEYS; bottom: NPDEYS. The dashed lines

represent the 95% prediction interval for a normal distribution.

Table IV. Different Tests Proposed for Normalized Metrics Based

on Concentration for Vreal: Mean and Variance Tests and

Shapiro YWilks (SW) Normality Tests

Dataset Metric Mean test Variance test SW test

SPEY 0.03 <0.0001 <0.0001

Vreal SPEYS 0.72 0.0044 <0.0001

NPDEYS 0.85 0.0005 0.01
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when computed with a large number of simulations, has a
known theoretical distribution which can be tested. This
metric was applied in the present paper but was improved as
compared to the previous applications (19,20) in that the
within subject correlation between observations is now taken
into account. Using the uncorrelated version of the NPDEYS,
their variance was significantly different from 1 for Vtrue (0.65)
as opposed to the correlated version of the metric. In the
previous paper this metric was named the prediction
discrepancy, here we use the name prediction errors to be
more homogenous in the paper with the other metric (SPEY,
SPEYS...) and also because now that they are normalized and
decorrelated these metrics are more in the spirit of an error
than of a measure of discrepancy.

Regarding the tests applied to the different metrics, the
null hypothesis is that the model is correct, so that we can
only invalidate a model when we reject H0, never accept it.
To test H0 using metrics based on observations, we propose
to use simultaneously a mean test, a variance test and a nor-
mality test. The ShapiroYWilks has become the preferred test
of normality because of its good power as compared to a wide
range of alternative tests. The KolmogorovYSmirnov test that
was used in the previous paper (19) is very general to test any
distribution and may have lower power compared to other
normality tests like AndersonYDarling test, CramerYvon-
Mises test or ShapiroYWilks test. Because the KolmogorovY
Smirnov test is very conservative, there is a high likelihood of
not rejecting normality. Mean tests are more efficient to detect
problems with fixed effects, as here with Vfalse, and if
significant the SW test is not needed.

The three metrics were able to reject Vfalse by visual
inspection, however the trend is more visible for NPDEYS.
Applying statistical tests on these metrics, SPEY and SPEYS
showed a significant difference in the mean and variance tests
for Vfalse, but the SW test was significant on both datasets
Vfalse and Vtrue. On the other hand, the approach based on
NPDEYS does not reject Vtrue and, based on the combina-
tion of the three tests, also rejected Vfalse corresponding to the
expected theoretical properties. However, although the mean
and variance tests were significant for Vfalse, the NPDEYS
are not significantly different from a normal according to the
SW test (p = 0.09) in this example. We do not have an
explanation, and further investigations are needed.

Metrics based on hyperparameters without Monte Carlo
simulation were also interesting for external evaluation. The

Wald test assessed whether the population estimates were
significantly different in the building and validation datasets,
taking into account the precision in the estimation of the
hyperparameter. A correction for multiple tests was applied
with the Simes procedure, and we were able to pick up the
differences in the fixed effects. The global Wald test was also
used, but this test, when significant, did not allow us to detect
which parameters were different between the two datasets.
Note that the Wald test assumes the normality of the
estimators. Metrics with Monte Carlo simulation did not make
this assumption and provided the same results in this simple
example. Simulation carries however a large computational
burden, because all the simulated datasets have to be re-fitted.

Finally, we introduce new metrics based on objective
function. The metrics performed similarly on the simulated
validation datasets but we recommend the use of the metric
based on the gain in objective function evaluated by simula-
tion (PEGOFS) for the following reason. In this paper we deal
with BQL data using a standard method in population
pharmacokinetics which consists in replacing the first BQL
measurement in a series with the value LOQ/2 and censoring
the following BQL measurements. We applied this method to
both the original and the simulated datasets. The distribution
of the objective functions resulting from the fit of the
simulated datasets therefore arises from datasets with poten-
tially different number of observations, and objective func-
tions are obtained as minus twice the log-likelihood up to a
constant which depends on the number of observations.
Therefore the empirical posterior distribution of the objective
function (PEOFS) obtained using the simulated data may not
be as accurate as expected. On the other hand, PEGOFS are
defined as the difference in objective function between fitted
and non-fitted models, and therefore the constant is eliminat-
ed from their expression, so that PEGOFS do not suffer from
the same problem as PEOFS in the presence of a varying
number of BQL measurements. As an alternative, we could
also account for the presence of BQL by computing the
contribution of BQL data to the likelihood, but this would
require complex computations in NONMEM.

Yano, Beal and Sheiner defined posterior predictive
check (PPC) (10) and proposed three approaches to compute
the posterior distribution of the parameters estimated
through the maximum likelihood estimation (31,32). Here
the metrics NPDEYS, SPEHS, PEOFS and PEGOFS are all
forms of PPC. They were built without considering the
estimation error, the simplest of the three approaches
implemented by Yano et al., who have shown it to perform
well in large enough datasets.

The metrics were finally applied to a real dataset, Vreal.
Model MB was not found to be valid when applied to this
dataset collected from 12 healthy volunteers according to
most of the metrics proposed above. The metrics based on
observations or on objective function demonstrated model
misfit, while metrics based on hyperparameters highlighted
the differences between the two datasets (learning and
validation datasets). Using metrics based on hyperparameters,
the main differences were a higher apparent clearance in the
phase I subjects, as well as a lower interindividual variability
for CL/F and V/F and a smaller residual error variance. These
results can be explained by the differences between a phase I
and a phase II study. In a phase I study, there are few subjects,

Table V. Population Pharmacokinetic Parameters of Gliclazide

(Estimate and Relative Standard Error of Estimation, RSE) with

Data from the Phase I Study (Vreal)

Population parameters
Vreal

Estimate RSE (%) P

CL/F (l/h) 2.0 (7.5) <0.0001

V/F (l) 40.6 (6.5) 0.82

Tabs (h) 5.7 (4.6) 0.009

!2
CL=F 0.06 (33.3) <0.0001

!2
V=F 0.05 (40.0) 0.054

s2 0.10 (10.0) 0.003

P is the p value of the Wald test for each hyperparameter compared

to MB .
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participants are healthy volunteers (except for oncology
studies), young, often male and have normal body weight
and normal biological functions, and the pharmacokinetics in
patients may show a number of modifications.

All the evaluation methods we presented aim at providing
one or a small set of metrics to assess model adequacy. As such
they are criteria combining information about various sources
of model misspecification and it is not always easy to assert
which part of the model should be improved. For instance for
evaluation through predicted concentrations, a model with or
without covariates should have correct standardized predic-
tion errors if the estimation of inter-individual variability is
adequate (28). Also misspecification of the error model may
lead to errors in the model of the random effects, which are not
always easy to find when exploring only the post hoc
distribution (33). We therefore recommend to use several
approaches or metrics to evaluate a model in order to provide
a more informative overview.

CONCLUSION

In conclusion, the three groups of metrics discussed here
can be used to evaluate a population model. The choice of the
metrics depends on the objectives of the analysis. Model
evaluation based on observations is crucial if the model is to be
used for clinical trial simulation or for therapeutic drug
monitoring. Amongst the first type of metrics based on
concentration, SPEY (WRES) are easily computed and were
able to pick out the problem in Vfalse according to the visual
inspection of the metrics and two of the three statistical tests
but their calculation are based on the first order method
which is not always used in modelling. As simulations are
often performed in population analyses to calculate predic-
tion intervals or to perform visual predictive check, we can
use the same simulations to compute SPEYS or NPDEYS
and apply the statistical tests. We recommend in a final step
to use NPDEYS over SPEY or SPEYS since they do not
depend on an approximation of the model. If the aim is to
compare two populations, metrics based on hyperparameters
are very useful to highlight differences between the datasets.
Model evaluation based on objective function is a good
approach to evaluate a series of models during the building
process. These last metrics based on objective function are an
interesting new tool for external evaluation. Amongst the
three metrics based on objective function proposed, we
recommend using the metrics based on the empirical
distribution of the difference in objective function between
fitted and no-fitted models (PEGOFS), obtained through
simulations. Metrics based on hyperparameter, SPEHS or on
the delta of objective functions, PEGOFS, need a simulation
and an estimation step. So these methods are time consuming
and should be applied to the final model or in the building
process only if the model is simple enough.
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